Data Computational Modelling of Multivariable Non-Stationary Noisy Linear Systems by MOESP_AOKI_VAR Algorithm

نویسندگان

  • Johanna B. Tobar
  • Celso P. Bottura
  • Celso Bottura
چکیده

The main objective of this work is to develop a recursive algorithm for identification in the state-space of linear stochastic discrete multivariable non-stationary system; a computational process called MOESP_AOKI_VAR is proposed and implemented to achieve this. The proposed algorithm is based on the subspace methods: Multivariable Output-Error State Space (MOESP), used for computational modelling of systems and on an AOKI algorithm developed by Masanao Aoki, for computational modelling of time series that we call the Aoki algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems

Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...

متن کامل

System Identification Based on Frequency Response Noisy Data

In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...

متن کامل

System Identification Based on Frequency Response Noisy Data

In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...

متن کامل

Nonlinear Control System Design Using Variable Complexity Modelling and Multiobjective Optimization

To design controllers for complex non-linear systems usually involves the use of expensive computational models. A non-linear thermodynamic model of a gas turbine engine is used to evaluate a selection of designs for a multivariable PI controller configuration. An approach using variable complexity modelling (VCM) is introduced to allow more designs to be evaluated and also to speed up the desi...

متن کامل

Robust maximum-likelihood estimation of multivariable dynamic systems

This paper examines the problem of estimating linear time-invariant state-space system models. In particular it addresses the parametrization and numerical robustness concerns that arise in the multivariable case. These difficulties are well recognised in the literature, resulting (for example) in extensive study of subspace based techniques, as well as recent interest in “data driven” local co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015